Optimization of TiO_2 Nanostructure Antireflection Coatings for Enhanced Optical Performance in GaAs Solar Cells

Authors

  • Sunusi Muhammad Dayyab National Environmental Standards and Regulations Enforcement Agency (Nigeria)
  • Prof. M. H. Ali Bayero University, Kano

DOI:

https://doi.org/10.33003/fjorae.2024.0102.06

Keywords:

Antireflection, Coating, COMSOL, Nanostructure, Solar cell, Titanium dioxide

Abstract

This study presents the effects of the various titanium dioxide  nanostructures as anti-reflection coatings on solar cells. The study is conducted in the COMSOL Multi-physics environment where  solar cell and titanium dioxide based antireflection coating are simulated. The optical properties of the solar cells with and without the coating were evaluated. Three different coating particles were used; cubic, spherical and pyramidal. The simulation results showed that the cubic nanostructure was found to be more effective, reducing the reflectance percentage from 25.5% without  to 3.55% with the ARC at a dimension of 50 nm. The pyramidal nanostructure at same width and a height of 100 nm also demonstrated a reduction in reflectance to 9.9%.  This result will definitely enhance the absorption capability of the solar cell whereby increasing its overall efficiency.

Author Biography

Prof. M. H. Ali, Bayero University, Kano

Professor from Department of Physics 

References

Abu-Shamleh, A., Alzubi, H., & Alajlouni, A. (2021). Optimization of antireflective coatings with nanostructured TiO2 for GaAs solar cells. Photonics and Nanostructures - Fundamentals and Applications, 43. https://doi.org/10.1016/j.photonics.2020.100862

Domtau, D. L., Simiyu, J., Ayieta, E. O., Muthoka, B., & Mwabora, J. M. (2016). Optical and Electrical Properties Dependence on Thickness of Screen-Printed TiO 2 Thin Films. Journal of Materials Physics and Chemistry, 4(1), 1–3. https://doi.org/10.12691/jmpc-4-1-1

Law, A. M., Jones, L. O., & Walls, J. M. (2023). The performance and durability of Anti-reflection coatings for solar module cover glass – a review. In Solar Energy (Vol. 261, pp. 85–95). Elsevier Ltd. https://doi.org/10.1016/j.solener.2023.06.009

Leem, J. W., Su Yu, J., Jun, D. H., Heo, J., & Park, W. K. (2014). Efficiency improvement of III-V GaAs solar cells using biomimetic TiO 2 subwavelength structures with wide-angle and broadband antireflection properties. Solar Energy Materials and Solar Cells, 127, 43–49. https://doi.org/10.1016/j.solmat.2014.03.041

Makableh, Y. F., Alzubi, H., & Tashtoush, G. (2021). Design and optimization of the antireflective coating properties of silicon solar cells by using response surface methodology. Coatings, 11(6). https://doi.org/10.3390/coatings11060721

Mandong, A. M., & Uzum, A. (2021). Fresnel calculations of double/multi-layer antireflection coatings on silicon substrates. Research on Engineering Structures and Materials, 7(4), 539–550. https://doi.org/10.17515/resm2020.241en1217

Mbengue, N., Diagne, M., Dia, F., Ndiaye, S., Niasse, O. A., Dieye, A., Niane, M., & Ba, B. (2016). Simulation Study of Optical Reflection and Transmission Properties of the Anti-Reflection Coatings on the Silicon Solar Cells. https://doi.org/10.17950/ijset/v5s3/308

Parajuli, D., Gaudel, G. S., Kc, D., Khattri, K. B., & Rho, W. Y. (2023). Simulation study of TiO2 single layer anti-reflection coating for GaAs solar cell. AIP Advances, 13(8). https://doi.org/10.1063/5.0153197

Rathanasamy, G.V. Kaliyannaa, S. Sivaraj, A. Saminathan, B. Krishnan, D. Palanichamy, R. E. U. (2022). Influence of Silicon Dioxide-Titanium Dioxide Antireflective Electrosprayed Coatings on Multicrystalline Silicon Cells. Advances in Materials Science and Engineering, 2022. https://doi.org/10.1155/2022/9444524

Richards, B. S. (2003). Single-material TiO2 double-layer antireflection coatings. Solar Energy Materials and Solar Cells, 79(3), 369–390. https://doi.org/10.1016/S0927-0248(02)00473-7

Shanmugam, N., Pugazhendhi, R., Elavarasan, R. M., Kasiviswanathan, P., & Das, N. (2020). Anti-reflective coating materials: A holistic review from PV perspective. Energies, 13(10), 1–93. https://doi.org/10.3390/en13102631

Wang, X., & Shen, J. (2010). Sol-gel derived durable antireflective coating for solar glass. Journal of Sol-Gel Science and Technology, 53(2), 322–327. https://doi.org/10.1007/s10971-009-2095-y

Womack, G., Kaminski, P. M., Abbas, A., Isbilir, K., Gottschalg, R., & Walls, J. M. (2017). Performance and durability of broadband antireflection coatings for thin film CdTe solar cells. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 35(2). https://doi.org/10.1116/1.4973909

Downloads

Published

2024-11-02