Device Simulation Of Free Hole Transport Layer (FHTL) Based On FASnI3 Perovskite Solar Cell With C60 Electron Transport Layer (ETL)
DOI:
https://doi.org/10.33003/fjorae.2024.0101.01Keywords:
Perovskite solar cells,, formamidinium tin iodide, 1D – SCAPSAbstract
In this study, we performed device simulation for free hole transport layer (FHTL) perovskite solar cells based on with electron transport layer (ETL) to investigate the impact of the light absorbing layer on the performances of the proposed device. This layer is responsible for photon’s absorptions and generation of charge carriers. The proposed solar cells (Glass / ) have been computed and simulated using a one-dimensional solar capacitances simulator (1D – SCAPS software) governed by Poisson’s and continuity equations. The results of designed parameters obtained from experimental and theoretical reported works were employed during the simulation process for the proposed solar cell and the calculated optimized power conversion efficiency (PCE) of the perovskite solar cells is 17.38 (%) when compared with experimental work with power conversion efficiency (PCE) of 11.4 %. The effect of the light absorbing layer was analyzed based on varying layer thickness, defect density and band gap with an optimized open circuit voltage of , close circuit current , Fill factor and . The results of the study give tin-based perovskite solar cells more strong hold if adopted in the design of Photovoltaic modules and thin film technology, due to their high estimated power conversion efficiency and fill factor with almost zero environmental effect than a perovskite solar cells designed based on lead.
References
A. Abate, T. Leijtens, S. Pathak, J. Teuscher, R. Avolio, M. Errico, J. Kirkpatrick, J. Ball, P. Docampo, I. McPherson, H.J. Snaith, “Lithium salts as “redox active” p-type dopants for organic semiconductors and their impact in solid-state dye-sensitized solar cells, Phys. Chem. Chem. Phys. 15 (7) (2013) 2572–2579, https:// doi.org/10.1039/C2CP44397J.
A. Hima, N. Lakhdar, B. Benhaoua, A. Saadoune, I. Kemerchou, F. Rogti, An optimized perovskite solar cell designs for high conversion efficiency, Superlattice. Microsoft. 129 (2019) 240–246, https://doi.org/10.1016/j.spmi.2019.04.007.
C. Lin, J. Tu, X. Hu, Z. Huang, X. Meng, J. Yang, X. Duan, L. Tan, Z. Li, Y. Chen, Enhanced hole transportation for inverted tin-based perovskite solar cells with high performance and stability, Adv. Funct. Mater. 29 (2019) 1808059, https:// doi.org/10.1002/adfm.201808059.
C. Wang, F. Gu, Z. Zhao, H. Rao, Y. Qiu, Z. Cai, G. Zhan, X. Li, B. Sun, X. Yu, B. Zhao, Self-repairing tin-based perovskite solar cells with a breakthrough efficiency over 11%, Adv. Mater. (Weinheim, Ger.) 32 (31) (2020) 1907623, https://doi.org/10.1002/adma.201907623.
E. Jokar, C.H. Chien, C.M. Tsai, A. Fathi, E.W.G. Diau, Robust tin-based perovskite solar cells with hybrid organic cations to attain efficiency approaching 10%, Adv. Mater. (Weinheim, Ger.) 31 (2) (2019) 1804835, https://doi.org/10.1002/ adma.201804835.
F. Gu, S. Ye, Z. Zhao, H. Rao, Z. Liu, Z. Bian, C. Huang, Improving the performance of lead-free formamidinium tin triodide perovskite solar cells by tin source purification, Solar RRL 2 (10) (2018) 1800136, https://doi.org/10.1002/ solr.201800136.
G. Liu, C. Liu, Z. Lin, J. Yang, Z. Huang, L. Tan, Y. Chen, Regulated crystallization of efficient and stable tin-based perovskite solar cells via a self-sealing polymer, ACS applied material & interfaces 12 (12) (2020) 14049–14056, https://doi.org/ 10.1021/acsami.0c01311.
G. Schileo, G. Grancini, Lead or no lead? Availability, toxicity, sustainability and environmental impact of lead-free perovskite solar cells, J. Mater. Chem. C 9 (2021) 67–76, https://doi.org/10.1039/D0TC04552G.
H. Abdy, A. Aletayeb, M. Kolahdouz, E.A. Soleimani, Investigation of metal-nickel oxide contacts used for perovskite solar cell, AIP Adv. 9 (1) (2019), 015216, https://doi.org/10.1063/1.5063475.
H. Dixit, D. Punetha, S.K. Pandey, Improvement in performance of lead-free inverted perovskite solar cell by optimization of solar parameters, Optik 179 (2019) 969–976, https://doi.org/10.1016/j.ijleo.2018.11.028.
H.J. Snaith, Present status and prospects of perovskite photovoltaics, Nat. Mater. 17 (5) (2018), https://doi.org/10.1038/s41563-018-0071-z, 372:376.
J.Y. Kim, J.W. Lee, H.S. Jung, H. Shin, N.G. Park, High-efficiency perovskite solar cells, Chem. Rev. 120 (15) (2020) 7867–7918, https://doi.org/10.1021/acs. chemrev.0c00107.
K. Akhiro, T. Kenjiro, S. Yasuo, M. Tsutomu, Organometal halide perovskites as visible light sensitizers for photovoltaic solar cells, J. Am. Chem. Soc. 131 (2009) 6050–6051, https://doi.org/10.1021/ja809598r.
M. Burgelman, K. Decock, S. Khelifi, A. Abass, Advanced electrical simulation of thin film solar cells, Thin Solid Films 535 (2013) 296–301, https://doi.org/ 10.1016/j.tsf.2012.10.032.
M. Konstantakou, T. Stergiapolous, A critical review on tin halide perovskite solar cells, J. Mater. Chem. 5 (2017) 11518–11549, https://doi.org/10.1039/ C7TA00929A.
M. Kumar, A. Raj, A. Kumara, A. Anshul, An optimized lead-free formamidinium Sn-based perovskite solar cell design for high power conversion efficiency by SCAPS simulation, Opt. Mater. 108 (2020) 110213, https://doi.org/10.1016/j. optmat.2020.110213.
M. Nakamura, Y. Kouji, Y. Chiba, H. Hakuma, T. Kobayashi, T. Nakada, “Achievement of 19.7% efficiency with a small-sized Cu (InGa)(SeS)2 solar cells prepared by sulfurization after salinization process with Zn-based buffer, in 39th IEEE PVSC, Tampa, USA, August 2013, https://doi.org/10.1109/ PVSC.2013.6744278.
M. Stuckelberger, T. Nietzold, G.N. Hall, B. West, J. Werner, B. Niesen, C. Ballif, V. Rose, D.P. Fenning, M.I. Bertoni, Charge collection in hybrid perovskite solar cells: relation to the nanoscale elemental distribution, IEEE Journal of Photovoltaics 7 (2) (2016) 590–597, https://doi.org/10.1109/ JPHOTOV.2016.2633801.
N.K. Noel, S.D. Stranks, A. Abate, C. Wehrenfennig, S. Gaurmera, A. A. Haghighirad, Lead-free organic-inorganic tin halide perovskite for photovoltaic applications, Energy Environ. Sci. 7 (9) (2014) 3061–3068, https://doi.org/ 10.1039/C4EE01076K.
NREL (National Renewable Energy Laboratory) is the best research-cell efficiency chart. https://www.nrel.gov/pv/cell-efficiency.html, 2020.
P. Tonui, S.O. Oseni, G. Sharma, Q. Yan, G.T. Mola, Perovskite photovoltaic solar cells: an overview of current status, Renew. Sustain. Energy Rev. 91 (2018) 1025–1044, https://doi.org/10.1016/j.rser.2018.04.069.
Q. Zhang, F. Hao, J. Li, Y. Zhou, Y. Wei, H. Lin, "Perovskite solar cells: must lead be replaced–and can it be done? Science and Technology of Advance Materials 19 (2018) 425–442, https://doi.org/10.1080/14686996.2018.1460176.
R. Lucija, R. Gehlhaar, T. Merckx, W. Qiu, U.W. Paetzold, H. Fledderus, J. Poortmans, Interconnection optimization for highly efficient perovskite modules, IEEE Journal of Photovoltaics 7 (1) (2016) 404–408, https://doi.org/ 10.1109/JPHOTOV.2016.2626144.
R.L. Milot, G.E. Eperon, T. Green, H.J. Snaith, M.B. Johnston, L.M. Herz, Radiative monomolecular recombination boosts amplified spontaneous emission in HC (NH2)2SnI3 perovskite films, J. Phys. Chem. Lett. 7 (20) (2016) 4178–4184, https://doi.org/10.1021/acs.jpclett.6b02030.
S. Abdelaziz, A. Zekry, A. Shaker, M. Abouelatta, Investigating the performance of formamidinium tin-based perovskite solar cell by SCAPS device simulation, Opt. Mater. 101 (2020) 109738, https://doi.org/10.1016/j.optmat.2020.109738.
S. Bansal, P. Aryal, Evaluation of new materials for electron and hole transport layers in perovskite-based solar cells through SCAPS-1D simulations, in IEEE 43rdPhotovoltaic Specialists Conference (PVSC), 2016, https://doi.org/10.1109/ PVSC.2016.7749702, 0747-0750.
S. Sharbati, J.R. Sites, Impact of the band offset for n-Zn(O, S)/pCu(In, Ga)Se2 solar cells, IEEE JournalJournal of Photovoltaics 4 (2) (2014) 697–702, https://doi.org/ 10.1109/JPHOTOV.2014.2298093.
T. Wu, X. Liu, X. He, Y. Wang, X. Meng, T. Noda, X. Yang, L. Han, “Efficientandstabletin-based perovskite solar cells by introducing π-conjugated Lewis base, Sci. China Chem. 63 (1) (2020) 107–115, https://doi.org/10.1007/ s11426-019-9653-8.
T.M. Koh, T. Krishnamoorthy, N. Yantara, C. Shi, W.L. Leong, P.P. Boix, A. C. Grimsdale, S.G. SMhaisalkar, N. Mathews, Formamidinium tin-based perovskite with low Eg for photovoltaic applications, J. Mater. Chem. A 3 (29) (2015) 14996–15000, https://doi.org/10.1039/C5TA00190K.
T.S. Sherkar, C. Momblona, L. Gil-Escrig, J. Avila, M. Sessolo, H.J. Bolink, Recombination in perovskite solar cells: significance of grain boundaries, interface ChemPhysChem 18 (6) (2017) 617–625, https://doi.org/10.1002/ cphc.201601245.
V.E. Madhavan, I. Zimmermann, A.A.B. Baloch, A. Manekkathodi, A. Belaidi, N. Tabet, M.K. Nazeeruddin, CuSCN as hole transport material with 3D/2D perovskite solar cells, ACS Appl. Energy Mater. 3 (1) (2019) 114–121, https://doi. org/10.1021/acsaem.9b01692.
X. Gu, Y. Wang, T. Zhang, D. Liu, R. Zhang, P. Zhang, J. Wu, Z. David Chen, L. Shibin, Enhanced electronic transport in Fe3+-doped TiO2 for high-efficiency perovskite solar cells, J. Mater. Chem. 5 (41) (2017) 10754–10760, https://doi. org/10.1039/C7TC03845C.
Z. Shi, J. Guo, Y. Chem, Q. Li, Y. Pan, H. Zhang, Y. Xia, W. Huang, Lead-free organic-inorganic hybrid perovskites for photovoltaic applications: recent advances and perspectives, Adv. Mater. (Weinheim, Ger.) 29 (2017) 1605005, https://doi.org/10.1002/adma.201605005.