Effect of High Concentration of Equivalent Thorium (eTh) And Uranium (eU) Within Part of North Central Nigeria on Geothermal Parameters

Authors

  • Adetona A Adebayo
  • Fidelis Kwaghhua Federal University of Technology Minna
  • Aisha Alkali

DOI:

https://doi.org/10.33003/fjorae-2024-0101.06

Keywords:

Curie depth,, Geothermal,, Heat Flow,, Aeromagnetic, and radiometric data

Abstract

A high amount of heat flow from a shallow curie depth is essentially related to a promising geothermal resource. This work explores the depth of demagnetisation due to high radiogenic heat content of the basement rocks. The Total Magnetic Intensity and the radiometric data, consisting of the Potassium count, the Uranium and Thorium equivalents, were employed for the research work. Sheet 145 (Kajuru) and 146 (Geshere) both on latitude 10°00'N to 10°30'N and longitude 7°30'E to 8°30'E covering 6,050 km2 within Kaduna State of Central Nigeria is an area with notedly high concentrations of these radionuclide by previous researchers. A shallow Curie point depth of 12.00 km was observed below Wugana while heat flow values ranging from 30.00 mW/m2 to 160 mW/m2 was estimated with an average of 80.60 mW/m2. Also, the geothermal gradients varied from 8.00 to 50.00 °CKm-1, with an average value of 25.50 °CKm-1. The effect of heat generated from the Potassium count, equivalent concentrations of Uranium and Thorium indicated the Northern end down to the Mid-western end displays medium to high radiogenic heat production (3.6 – 4.5 μW/m3). In conclusion, areas with low Currie depth that coincide with relatively high radiogenic heat production are located within Wugana, New Kwasan, and down to Ron villages, which are generally located at the Mid-North and Mid-Western areas with intrusive granitic rocks

References

Abdel Zaher, M., Elbarbary, S., Sultan, S.A., El-Qady, G., Ismail, A., & Takla, E.M. (2018a). Crustal thermal structure of the Farafra oasis, Egypt, based on airborne potential field data. Geothermics 75, pages 220–234. https://doi.org/10.1016/j.geothermics.2018.05.006

Abdel Zaher, M., Saibi, H., Mansour, K., Khalil, A., Soliman, M., (2018b) Geothermal exploration using airborne gravity and magnetic data at Siwa Oasis, Western Desert, Egypt Renewable and Sustainable Energy Reviews Volume 82, Part 3, Pages 3824-3832. https://doi.org/10.1016/j.rser.2017.10.088

Abraham K. M., Lawal A. A (2011) Interpretation of aeromagnetic data for geothermal energy investigation of Ikogosi Warm Spring, Ekiti state, south western Nigeria. International Journal of Scientific research 1: 103-118.

Adetona, A. A., Rafiu, A. A., Aliyu, B. S., John, M. K., & Kwaghhua, I. F. (2024). Estimating the Heat Flow, Geothermal Gradient and Radiogenic Heat within the Young Granites of Jos Plateau North Central Nigeria. Journal of the Earth and Space Physics, 49(4).

Adetona, A. A., Fidelis, I. K., & Shakirat, B. A. (2023). Interpreting the magnetic signatures and radiometric indicators within Kogi State, Nigeria for economic resources. Geosystems and Geoenvironment, 2(2), 100157.

Akinnubi T. D., Adetona A. A. (2018) Investigating the geothermal potential within Benue State, central Nigeria from radiometric and high resolution aeromagnetic data. Journal of Geology and Mining Research. pp.(9)10

Akinyemi, L., & Zui, V. I. (2019). Summary of heat flow studies in Nigeria. Journal of the Belarusian State University. Geography and Geology. No. 2. S. 121-132. https://elib.bsu.by/handle/123456789/240971

Bhattacharyya, B. K., & Leu, L. K. (1975). Spectral analysis of gravity and magnetic anomalies due to two-dimensional structures. Geophysics, 40(6), 993-1013.

Bhattacharyya, B. K., & Leu, L. K. (1977). Spectral analysis of gravity and magnetic anomalies due to rectangular prismatic bodies. Geophysics, 42(1), 41-50.

Blackely, R.J, (1995). Potential theory in gravity and magnetic application. Cambridge University

Brookins, D.G. (1982). Potassium, uranium, thorium radiogenic heat contribution to heat flow in the precambrian and younger silicic rocks of the Zuni and Florida mountains, New Mexico (U.S.A.). Journal of Volcanology and Geothermal Research. Volume 13, Issues 3–4, Pages 189-197. https://doi.org/10.1016/0377-0273(82)90049-X

Bücker, C; Rybach, L (1996). A simple method to determine heat production from gamma-ray logs, Marine and Petroleum Geology 13, 373-375

Chiozzi, P., Pasquale, V., & Verdoya, M. (2003). Heat from radioactive elements in young volcanics by γ-ray spectrometry. Journal of volcanology and geothermal research, 119(1-4), 205-214. https://doi.org/10.1016/S0377-0273(02)00354-2

Cull, J.P, Conley D. (1983). Geothermal Gradients and Heat Flow in Australian sedimentary Basin. Journal of Australian Geology and Geophysics 8: 32-337.

Jessop, A.M., Habart, M.A., Sclater, J.G. (1976). The world heat data collection 1976. Geothermal Services of Canada. Geotherm-ser.50, 251-266

Madu, A., Chinenyeze, J., Aniebonam, A. I., Onuoha M. K. (2015) Density and Magnetic Susceptibility Characterization in the Basement Complex Terrain of NE Kogi State/NW Benue State of Nigeria. International Journal of Science and Research (IJSR) Volume 5 Issue 12.

Manea, M., and Manea, V.C. (2011). Curie Point depth estimates and correlation with subduction in Mexico. Pure and Applied Geophysics, 168, 1489. https://doi.org/10.1007/s00024-010

Mason, B., & Moore, C. B. (1982). Principles of geochemistry (4th ed.). New York: Wiley.

McCay, A. T., Harley, T. L., Younger, P. L., Sanderson, D. C., & Cresswell, A. J. (2014). Gamma-ray spectrometry in geothermal exploration: State of the art techniques. Energies, 7(8), 4757-4780.

Mock, J. E., Tester, J. W., & Wright, P. M. (1997). Geothermal energy from the earth: its potential impact as an environmentally sustainable resource. Annual review of Energy and the Environment, 22(1), 305-356.

Mono, J. A., Ndougsa-Mbarga, T., Tarek, Y., Ngoh, J. D., & Amougou, O. U. I. O. (2018). Estimation of Curie-point depths, geothermal gradients and near-surface heat flow from spectral analysis of aeromagnetic data in the Loum–Minta area (Centre-East Cameroon). Egyptian journal of petroleum, 27(4), 1291-1299. https://doi.org/10.1016/j.ejpe.2018.07.002

Nwankwo, L. I., & Shehu, A. T. (2015). Evaluation of Curie-point depths, geothermal gradients and near-surface heat flow from high-resolution aeromagnetic (HRAM) data of the entire Sokoto Basin, Nigeria. Journal of Volcanology and Geothermal Research, 305, 45-55.

Obande, G. E., Lawal, K. M., Ahmed, L. A., (2014). Spectral analysis of aeromagnetic data for geothermal investigation of Wikki Warm Spring, north-east Nigeria. Geothermics (50) 85–9. DOI of original article: http://dx.doi.org/10.1016/j.geothermics.2013.08.002.

Odidi, I. G., Abu, M., Nasir, N. (2020). Investigation of Geothermal Energy Potential of Parts of Central and North-Eastern Nigeria Using Spectral Analysis Technique. FUDMA Journal of Sciences (FJS) ISSN online: 2616-1370 ISSN print: 2645 – 2944 Vol. 4 No. 2, pp 627 – 638. DOI: https://d oi.org/10.33003/fjs-2020-0402-248

Olorunsola, K., & Aigbogun, C. (2017). Correlation and mapping of geothermal and radioactive heat production from the Anambra Basin, Nigeria. African Journal of Environmental Science and Technology, 11(10), 517-531.

Okubo, Y., Graf, R. J., Hansen, R. O., Ogawa, K., & Tsu, H. (1985). Curie point depths of the island of Kyushu and surrounding areas, Japan. Geophysics, 50(3), 481-494.

Okubo, Y., Matsushima, J., & Correia, A. (2003). Magnetic spectral analysis in Portugal and its adjacent seas. Physics and Chemistry of the Earth, Parts A/B/C, 28(9-11), 511-519.

Rybach, L. (2010, April). The future of geothermal energy and its challenges. In Proceedings world geothermal congress (Vol. 29).

Rybach, L. (1976). Radioactive heat production: a physical property determined by the chemistry of rocks. The physics and chemistry of minerals and rocks, 309-318.

Salako, K. A., Adetona, A. A., Rafiu, A. A., Alahassan, U. D., Aliyu, A. & Adewumi, T. (2020) Assessment of Geothermal Potential of Parts of Middle Benue Trough, North-East Nigeria. Journal of the Earth and Space Physics, Vol. 45, No. 4. DOI: 10.22059/jesphys.2019.260257.1007017

Spector, A., Grant, F. S. (1970). Statistical models for interpreting aeromagnetic data, Geophysics 35: 293-302.

Stacey, F.O (1977). Physic of the earth John Willey and Sons, New York.

Tanaka, A., Okubo, Y., & Matsubayashi, O. (1999). Curie point depth based on spectrum analysis of the magnetic anomaly data in East and Southeast Asia. Tectonophysics, 306(3-4), 461-470.

Telford, W. M., Geldart, L. P., Sherif, R. E. & Keys, D. A. (1990). Applied Geophysics. Cambridge: Cambridge University Press

Tselentis, G. A. (1991). An attempt to define Curie point depths in Greece from aeromagnetic and heat flow data. pure and applied geophysics, 136, 87-101.

Trifonova, P., Zhelev, Z., Petrova, T., & Bojadgieva, K. (2009). Curie point depths of Bulgarian territory inferred from geomagnetic observations and its correlation with regional thermal structure and seismicity. Tectonophysics, 473(3-4), 362-374.

Uosif, M. A. M., Issa, S. A., & Abd El-Salam, L. M. (2015). Measurement of natural radioactivity in granites and its quartz-bearing gold at El-Fawakhir area (Central Eastern Desert), Egypt. Journal of Radiation Research and Applied Sciences, 8(3), 393-398. https://doi.org/10.1016/j.jrras.2015.02.005

Whitmarsh, R. B., Manatschal, G., & Minshull, T. A. (2001). Evolution of magma-poor continental margins from rifting to seafloor spreading. Nature, 413(6852), 150-154.

Younger, P. L. (2015). Geothermal energy: Delivering on the global potential. Energies, 8(10), 11737-11754.

Downloads

Published

2024-05-12