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Abstract 

In this research, Understanding the assumptions of time series models is crucial. In this 
study, we aim to analyse and modify Autoregressive models on selected linear and 
nonlinear time series models to determine their stationarity and non-stationarity at 
different orders, it would be useful to conduct tests on the null hypothesis of a unit root. 
The study examines the power and type I error rates of different statistical tests, such as 
Kwiatkowski, Phillips, Schmidt and Shin (KPSS), Augmented Dickey-Fuller (ADF), and 
Phillips Perron (PP). These tests are used to determine whether a given dataset is 
stationary or non-stationary. The study also considers different orders of Autoregressive 
(AR) and Trigonometric Smooth Transition Autoregressive (TSTAR) models, as well as 
various sample sizes. A Python software was utilised to conduct an investigation 
simulating the performance of stationarity and unit root tests. The experiments were 
carried out using sample sizes; 20, 50, 70, 100, 120, 150, 180, 200, 230 and 250 for 
various orders of Autoregressive (AR) and Trigonometric Smooth Transition 
Autoregressive (TSTAR) models. The tests were compared based on their respective power 
percentages to determine their relative performance. The study determined that Phillips 
Perron (PP) is the optimal choice across all the conditions examined, including the models, 
sample sizes, and ordering. 
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1. INTRODUCTION 

A time series model is a collection of data points arranged in chronological order, with 

time serving as the independent variable. Also, Time series is an order in which data 

points are collected in a sequential manner over a period of time.  A time series data is 

indeed an array of time and numbers. Data obtained from observations collected at 

successive time space are widely available. For example, there are monthly or yearly sales, 

quarterly demands and yearly price indices in economic studies. Also, yearly, monthly 

and daily precipitation, flooding, temperatures and wind speeds are observed in 

meteorology. It is equally observed that in agriculture, soil erosion, crop and livestock 
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productions, and number of eggs produced by fowls are recorded daily, monthly and 

annually. The area of application of time series is virtually endless. 

A time series model typically has the component for the mean and the component for the 

conditional variance (Box and Pierce, 1970). Time series is an order in which data points 

are collected in a sequential manner over a period of time.  A time series data is indeed 

an array of time and numbers. Moving average, autoregressive moving average, 

exponential, autoregressive, and seasonal modeling proceed through a sequence of well-

defined procedures. The initial stage involves identifying the model. Identification involves 

precisely determining the suitable configuration. (Autoregressive (AR) models, Smooth 

Transition Autoregressive, Exponential Smooth Autoregressive model and Trigonometric 

model) whether the model is stationary or non-stationary under distributions. 

Identification is occasionally performed by examining plots of the autocorrelation function 

and partial autocorrelation function. Identification is occasionally carried out by an 

automated iterative process that involves fitting numerous potential model structures and 

ordering. A goodness-of-fit statistic is then used to determine the most suitable model.  

A. Stationarity 

A stationary process in Statistics refers to a stochastic process that maintains the same 

joint probability distribution even when it is shifted in time. Therefore, if the mean and 

variance exist, they remain constant across time. 

The primary assumption regarding time series data is that it is stationary. Stationarity 

refers to the concept that the probability principles governing the behaviour of a process 

remain constant throughout time. Yes, the process is in a state of statistical equilibrium. 

More precisely, a process {Y_t} is considered rigorously stable if the joint distribution of 

Yt is identical to that of Yt − k for all values of t and k, where t and k are positive integers. 

Put simply, the Y's have a nearly same distribution (Jonathan and Kung-Sik, 2008). 

Consequently, it can be deduced that the expected value of Yt is equal to the expected 

value of Yt - k for all values of t and k, resulting in a constant mean function at all points 

in time. Similarly, the variance of Yt is equal to the variance of Yt - k for all values of t 

and k, indicating that the variance remains constant across time. Furthermore, a 

fundamental premise of stationary time series is the presence of white noise. This means 

that the error term in the model must follow a normal distribution with a mean of zero 

and a variance of σ2.  

B. Nonlinear Time series Model 

Time series data possessing nonlinear attributes are increasingly faced by practitioners 

in many fields. Stationary Gaussian autoregressive models are determined by their first 

two moments. Therefore, it is necessary for linear autoregressive models to exhibit time 

reversibility. It is worth noting that several real datasets exhibit time irreversibility, which 

implies that the underlying process is nonlinear (David and Darfiana, 2011). As discussed 

in the influential paper by Tong and Lim (1980), it was demonstrated that the cyclical 

dynamics observed in sections of the lynx data cannot be adequately explained by a linear 

Gaussian model. In addition, he made a compelling case for the necessity of practical 

nonlinear models in addressing the persistent challenges posed by characteristics like 
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time irreversibility and limit cycles in real data. The explanation and application of locally 

linear threshold models by Tong (1990) opened up exciting possibilities for model building 

strategies. 

The identification, modeling and forecasting time series data that have nonlinear 

attributes have attracted considerable attention in different fields of studies such as 

engineering, social science, life science, natural sciences, financial studies and other 

related areas which exhibit nonlinear process. When a nonlinear attribute is determined 

in data, strong evidence has been found in the data to abandon the linear model and 

therefore a nonlinear model needs to be selected. In order to select a suitable nonlinear 

model for time series data, good statistical and diagnostic tests are needed to determine 

the nonlinearity in the data.  

 

2. LITERATURE REVIEW 

Next, we need to calculate the coefficients of the model. Estimating coefficients of AR 

models can be achieved through the method of least-squares regression. Understanding 

and estimating parameters of MA and ARMA models typically involves a more intricate 

iteration process (Chen and Tsay, 2019). In practice, estimation is easily handled by a 

computer programme, requiring minimal user interaction. This ensures a transparent 

process for the user. Next, we need to verify the model. This step is also known as 

diagnostic checking, or verification (Anderson, 1976). Ensuring that the residuals of the 

model are random and that the estimated parameters are statistically significant are two 

crucial aspects of the checking process. Typically, the fitting process is driven by the 

principle of simplicity. The goal is to find the most straightforward model with the fewest 

parameters that accurately represents the data. 

A discrete time series consists of a collection of time-ordered values {𝑦1, 𝑦2 … … … … … 𝑦𝑛}  

derived from observations of a particular phenomenon., A time series is a sequence of 

observations that are measured sequentially throughout time. These measurements can 

either be continuous or performed at specific time intervals (Kim, 2022). The key 

techniques for handling econometrics and time series data in model fitting are 

Autoregressive (AR) models, Smooth Transition Autoregressive models, Exponential 

Smooth Autoregressive models, and Trigonometric models. The fundamental premise of 

these models is the need of stationarity, meaning that the data being used for fitting 

should exhibit stationarity. 

Autoregressive Mathematical models such as smooth transition and moving average 

models capture the persistence, or autocorrelation, in a time series. The models are 

commonly utilised in econometrics, hydrology, engineering, and various other fields. 

There are several reasons why fitting Autoregressive (AR) models, Smooth Transition 

Autoregressive (STAR), Exponential Smooth Autoregressive model, and Trigonometric 

model models to data is beneficial. Modelling can provide valuable insights into the 

physical system by shedding light on the underlying processes that contribute to the 

persistence observed in the series. These models can also be utilised to forecast the 

behaviour of a time series or econometric data based on historical values. This prediction 

can serve as a reference point for assessing the potential significance of other variables 
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in the system. They have become a common tool for forecasting economic and industrial 

time series. Autoregressive (AR) models, Smooth Transition Autoregressive (STAR), 

Exponential Smooth Autoregressive model, and Trigonometric model can also be used for 

simulation purposes. These models allow for the generation of synthetic series that mimic 

the persistence structure of an observed series. Simulations are particularly valuable for 

establishing confidence intervals for statistics and estimated econometrics quantities. 

Based on these studies, it would be beneficial to conduct tests for both stationarity and 

a unit root when determining the nature of economic data using classical methods. This 

paper presents a clear and concise examination of the null hypothesis of stationarity 

compared to the alternative of a unit root. It explores different orders of autoregressive 

and moving average, as well as various sample sizes. It is quite remarkable that there 

have been very few previous attempts to test the null hypothesis of stationarity. In their 

study, Park and Mahdi (2020) examine a test statistic that resembles the F statistic for 

deterministic trend variables that are considered unnecessary. According to their 

findings, this statistic should ideally be close to zero when the null hypothesis of 

stationarity holds true, but not when there is an alternative hypothesis of a unit root. In 

their study, Zhang and Zhou (2022) examine the Dickey-Fuller test statistics by 

estimating both trend-stationary and difference-stationary models. They further employ 

the bootstrap method to assess the distribution of these statistics. 

Autoregressive, exponential, autoregressive moving average, moving average, and 

seasonal modeling Follow a structured sequence of clear steps. Identifying the model is 

the initial step. Identification involves determining the suitable structure (Autoregressive 

(AR) models Smooth Transition Autoregressive, Exponential Smooth Autoregressive 

model and Trigonometric model whether the model is stationary or non-stationary under 

distributions. Identification can be performed by examining plots of the autocorrelation 

function and partial autocorrelation function. Identification is often achieved through an 

automated iterative process that involves fitting various model structures and orders. A 

goodness-of-fit statistic is then used to determine the most suitable model. 

Next, we need to determine the coefficients of the model. The coefficients of AR models 

can be estimated using least-squares regression. Estimating parameters of Autoregressive 

models typically involves a more intricate iteration process (Kim, 2022). In practice, the 

process of estimation is quite straightforward for the user, as it is carried out 

automatically by a computer programme with minimal or no user involvement. Next, we 

need to examine the model. This step is also known as diagnostic checking, or verification 

(Anderson, 1976). It is crucial to verify that the residuals of the model exhibit randomness 

and that the estimated parameters demonstrate statistical significance. Typically, the 

fitting process is driven by the idea of simplicity. The goal is to find the most 

straightforward model with the fewest parameters that can accurately represent the data. 

A stationary process in Statistics refers to a stochastic process that maintains a 

consistent joint probability distribution even when shifted in time. Therefore, if there are 

any parameters like the mean and variance, they remain constant over time. Stationarity 

is a crucial assumption when dealing with time series data. Stationarity is a fundamental 

concept in understanding how the behaviour of a process remains consistent over time. 

It revolves around the notion that the probability laws governing the process do not 
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undergo any changes as time progresses. Truly, the process is in a state of statistical 

equilibrium. In order to determine if a process {Y_t} is strictly stationary, we need to 

compare the joint distribution of Yt with that of Yt − k for all t and k, where t = 1, 2, … k. 

As stated by Jonathan and Kung-Sik (2008), the Y's are (marginally) identically 

distributed. It can be deduced that the expected value of Yt is equal to the expected value 

of Yt - k for all values of t and k, indicating that the mean function remains constant over 

time. The variance remains constant over time because Var (Yt) = Var(Yt − k) for all t and 

k. Furthermore, it is essential to note that in the realm of stationary time series, a 

fundamental assumption is the presence of white noise. This implies that the error term 

of the model must adhere to a normal distribution, with a mean of zero and a variance of 

σ2.  

The classical model for the mean part is the autoregressive (AR) model. When analysing 

time series data, it is common to discuss the concept of stationarity, which refers to the 

behaviour of a specific variable over time. There are three components to stationarity. The 

series exhibits a constant mean, indicating that there is no inherent inclination for the 

mean of the series to either rise or fall over time. Additionally, it is assumed that the 

variance of the series remains constant over time. Finally, it is assumed that the 

autocorrelation pattern remains constant throughout the series. Over the past twenty 

years, numerous non-linear time series models have been put forward. These include the 

bilinear model by (Granger and Andersen, 1978), the amplitude dependent exponential 

AR (EX PAR) model by Maulana and Slamet, (2020), the threshold AR model by Fan, 

(2019), and the random coefficient of AR model by (Ratnasingam and Ning, 2020), among 

several others. 

An influential model for the conditional variance component is the autoregressive 

conditional heteroscedastic (ARCH) model, as proposed by Kim et al. (2022). various time 

series models are commonly employed to fit and analyses the dynamic behavior of time 

series data. The commonly used ones are Linear models, including autoregressive (AR) 

models, moving average (MA) models, and mixed autoregressive moving average (ARMA) 

models (Chung-Ming, 2002). The ARCH model provides a fresh tool for quantifying risk 

and its influence on investment returns. It also offers a fresh approach to pricing and 

hedging non-linear assets like options. In 2023, Bollerslev introduced the GARCH model, 

which is a generalization of the ARCH model. Hipel and McLeod, (1994) hypothesized that, 

although a linear model may be adequate to describe average annual river flows, the 

relationship between daily river flow and precipitation may be nonlinear. For examples, 

Sankar & Pushpa,  (2022) provides an introduction to different types of nonlinear time 

series modeling primarily in the univariate setting. Franses and van Dijk, (2020) 

investigated the techniques for obtaining bivariate nonlinear models. Terasvirta, (2022) 

mentioned vector nonlinear autoregressive processes, vector nonlinear average processes 

and multiple bilinear time series models in passing but concentrated on statistical 

inference for nonlinear models using parametric procedure.  

The linear time series modeling depends on the type of system that generates the data. 

According to Kung-Sik (2018) and Liu and Zhu, (2022), time series analysis can be done 

using autoregressive (AR), moving average (MA), or autoregressive moving average (ARMA) 

models. Time series data possessing nonlinear attributes are increasingly faced by 

practitioners in many fields. It is well-known that the first two moments structurally 
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determine stationary Gaussian autoregressive models. Therefore, linear autoregressive 

models must be time reversible. However, many real datasets are time irreversible, 

indicating a nonlinear process (David and Darfiana, 2011). In fact, in the seminal paper 

on threshold models by Tong and Tsay, (2022), it was argued that no linear Gaussian 

model could account for the cyclical dynamics seen in sections of the lynx data. Tong and 

Lim, (2019) demonstrated that the threshold model can produce asymmetrical periodic 

behavior, as seen in the annual Wolf's sunspot and Canadian lynx data.  

So far, it has been suggested to use autoregressive models. As an illustration, consider 

the models presented by Nelson, (2019) for exponential functions, Alok,  (2020) for 

absolute value functions, and Soltyk and Chan,  (2023) for non-linear functions. It is 

challenging to ascertain the functional forms of the mean and conditional variance 

components in these models. A crucial part of any statistical model is, therefore, to verify 

these functional forms. Box and Pierce (1970) introduced a portmanteau test that utilizes 

the residual autocorrelation function (ACF) to assess the adequacy of a model. The test 

was revised by Franse and van Dijk,  (2020) to enhance its effectiveness. In their study, 

Fathian and Nadoushani, (2019) expanded their method to encompass a broader range 

of scenarios. In their recent study, Mcleod and Li, (2021) introduced a novel portmanteau 

test that utilizes squared residuals to analyze the ARMA model. These tests specifically 

address ARMA models and are not intended for non-linear time series models. In a study 

conducted by Li, (1992), the focus was on examining the asymptotic standard errors of 

the residual ACF in non-linear time series models. In their study, Cheng and Gan, (2020) 

proposed a statistical method that builds upon the Box-Pierce statistic. This method 

incorporates the first M-squared standardized residual ACF to assess various non-linear 

ARCH specifications. In their study, Li and Mak, (2019) introduced a comprehensive class 

of squared residual ACF to assess the validity of non-linear time series models, such as 

ARMA, ARCH, and other similar models. 

 

3. MATERIALS AND METHODS 
3.1 Data source and specifications  

In this section, we will conduct simulation studies to examine the performance of tests 

for stationarity across various orders of autoregressive and trigonometric models. Yt = 

∅1Yt−1 + ∅2Yt−2 + . . . + ∅pYt−p + et, where et represents a white noise process with a mean 

of zero and a variance of 𝜎2. ∅1, ∅2, … ∅p are autoregressive parameters. The mathematical 

model for existing and proposed models are Yt = ∅1Yt−1 + ∅2Yt−2 + . . . + ∅pYt−p + et is an 

existing model for Autoregressive model, where et represents a white noise process with 

a mean of zero and a variance of 𝜎2.  

Yt = TSTAR(p) is = 𝑆𝑖𝑛𝜙1Yt−1 + 𝑆𝑖𝑛𝜙2Yt−2 + ⋯ + 𝑆𝑖𝑛𝜙pYt−p + et  is called Trigonometric Smooth 

Autoregressive (TSTAR) model. 

3.2 Test of Stationarity and Unit Root (non-Stationarity) 

Let's take a look at the statistical issues that arise when dealing with autoregressive unit 

root tests, using the example of a simple 𝐴𝑅(𝑝) model. 
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𝑌𝑡 = ∅1𝑌𝑡−1 + 𝑒𝑡, 𝑒𝑡~𝑊𝑁(0, 𝜎2)                                                          (1) 

H0: ∅ = 1 𝑣𝑠𝐻1: |∅| < 1 

Here is the test statistic: 

𝑡∅=1 =
∅̂ − 1

𝑆𝐸(∅̂)
                                                                            (2) 

Given that ∅̂ represents the least square estimate and SE (∅̂) is the usual standard error 

estimate, it can be concluded that the test is a one-sided left tail test. If 𝑌𝑡 is stationary 

(i.e., if the absolute value of ∅ is less than 1), it can be demonstrated by Hamilton (1994) 

that; 𝑡∅=1~𝑁(0,1) 

3.3 Augmented Dickey–Fuller test 

The augmented Dickey-Fuller test (ADF) is a statistical test used to determine if a time 

series sample has a unit root. This test is an enhanced version of the Dickey-Fuller test, 

designed to handle larger and more complex time series models. In the test, the ADF 

statistic is a negative number. If the results are more negative, it would indicate a stronger 

rejection of the hypothesis that there is a unit root at a certain level of confidence. Next, 

the unit root test is conducted, comparing the null hypothesis ∅ = 0 with the alternative 

hypothesis of ∅< 0. After determining a value for the test statistic 

𝐷𝐹 =
∅̂

𝑆𝐸(∅̂)
                                                                                          (3) 

is calculated, it can be compared to the appropriate critical value for the Dickey-Fuller 

Test. If the test statistic is smaller (since this test is non-symmetrical, we do not consider 

an absolute value) than the critical value (which is more negative), then we reject the null 

hypothesis of∅ = 0 and conclude that no unit root is present. 

3.4 Kwiatkowski, Phillips, Schmidt and Shin (KPSS) 

In their study, Kwiatkowski et al. (2016) introduced the Langrage Multiplier (LM) test as 

a means of assessing trend and/or level stationarity, also known as the KPSS test. Now, 

the null hypothesis assumes a stationary process. Considering the null hypothesis as a 

stationary process and the unit root as an alternative is in line with a cautious testing 
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approach. Therefore, if we reject the null hypothesis, we can have a high level of 

confidence that the series does have a unit root. If the tests show a unit root but the KPSS 

test shows a stationary process, it is advisable to proceed with caution and consider the 

latter result. 

3.5 Null hypothesis 

𝐻0: 𝜎𝑒
2 = 0                                                                                                                       (4) 

Assuming that the errors follow a normal distribution with mean zero and variance 𝜎𝑒
2 

(𝑒𝑡~𝑁𝐼𝐼𝐷(0, 𝜎𝑒
2), the test statistic can be calculated. 

𝐿𝑀 =
∑ 𝑆𝑡

2𝑇
𝑡=1

𝜎̂𝑒
2                                                                                                              (5) 

𝜎̂𝑒
2 =

∑ 𝑒𝑡
2𝑇

𝑡=1

𝑇
                                                                                                                (6) 

𝑆𝑡 = ∑ 𝑒𝑖, 𝑡 = 1, … , 𝑇

𝑡

𝑖=1

                                                                                                      (7) 

The temporal trend and constant  𝑌𝑡 on are used in the regression, and the residuals, 

denoted as 𝑒𝑡 , are involved. 

3.6 Phillips Perron Test  

The Phillips Perron test evaluates the hypothesis of a unit root in modeling time series 

Yt. The test equation, PP = 𝑐 + 𝜎𝑡 + 𝜙1Yti−1 + et , includes the drift coefficient c and the 

deterministic trend coefficient 𝜎. 

 

4. RESULTS AND DISCUSSION 

In this section, numerical simulation study was conducted for the Autoregressive and 
Trigonometric Smooth Autoregressive models at different order under stationary and 
to investigate the Effect of sample size of each model at different orders were examined 
on each of the models. Tables 1 and 2 present the accuracy of identifying stationarity 
in the autoregressive (AR) models and stationarity in the Trigonometric Smooth 
Autoregressive (TSTAR) models respectively. Similarly, figures 1 and 2 present the 
stationarity Test Power for Autoregressive Models and Stationarity Test Power for 
TSTAR Models of Various Orders respectively.  
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Table 1: Accuracy of identifying stationarity in the autoregressive (AR) models 

expressed as a percentage. 

H0: |𝜙j| = 1(𝑛𝑜𝑛𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦) 𝑣𝑠𝐻1: |𝜙j| < 1(𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦). Models: AR(1) = 𝑌𝑡𝑖 = 0.5𝑌𝑡−1 + 𝑒𝑡, 

AR(2): 𝑌𝑡𝑖 = 0.5𝑌𝑡−1 + 0.3𝑌𝑡−2 + 𝑒𝑡 ,AR(3): 𝑌𝑡𝑖 = 0.5𝑌𝑡−1 + 0.3𝑌𝑡−2 + 0.1𝑌𝑡−3 + 𝑒𝑡 

Test 
Statistic 

 ADF KPSS PP 

Order 1 2 3 1 2 3 1 2 3 

Sample 
Size(n) 
20 80.15 79.00 75.87 70.03 70.35 70.04 94.52 94.52 97.00 
50 80.24 79.60 77.78 72.53 72.85 72.54 94.55 95.54 97.00 
70 82.45 79.90 77.80 74.53 74.85 74.54 94.59 96.52 97.00 

100 82.25 79.99 80.08 74.73 75.05 74.74 94.95 96.50 97.00 
120 83.55 79.99 80.07 71.03 75.35 75.04 95.58 96.51 97.00 
150 85.25 85.25 85.25 74.00 77.85 77.05 97.00 97.00 97.00 
180 85.25 85.25 85.25 75.45 77.85 77.11 97.00 97.00 97.00 
200 85.25 85.25 85.25 75.47 77.85 77.21 97.00 97.00 97.00 
230 85.25 85.25 85.25 76.45 77.85 77.45 97.00 97.00 97.00 
250 85.25 85.25 85.25 77.53 77.85 77.54 97.00 97.00 97.00 

 

 
Figure 1: Stationarity Test Power for Autoregressive Models of Various Orders 

 

Table 2: Accuracy in identifying stationarity in the Trigonometric Smooth 

Autoregressive (TSTAR) models expressed as a percentage. 

H0:|𝜙j| = 1(𝑛𝑜𝑛𝑠𝑡𝑎𝑡𝑖𝑛𝑎𝑟𝑦) 𝑣𝑠𝐻1: |𝜙j| < 1(𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦). Models: TSTAR(1): 𝑌𝑡𝑖 = 𝑠𝑖𝑛0.5𝑌𝑡−1 + 𝑒𝑡, 

TSTAR(2): 𝑌𝑡𝑖 = 𝑠𝑖𝑛0.5𝑌𝑡−1 + 𝑠𝑖𝑛0.3𝑌𝑡−2 + 𝑒𝑡, TSTAR(3): 𝑌𝑡𝑖 = 𝑠𝑖𝑛0.5𝑌𝑡−1 + 𝑠𝑖𝑛0.3𝑌𝑡−2 +

𝑠𝑖𝑛0.1𝑌𝑡−3 + 𝑒𝑡. 
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Test 

Statistic 

 ADF KPSS PP 

Order 1 2 3 1 2 3 1 2 3 

Sample 
Size(n) 
20 55.87 55.76 45.72 32.98 31.54 30.55 90.12 90.12 90.12 
50 55.87 55.76 45.72 32.98 31.54 30.55 90.34 90.34 90.34 
70 55.87 55.76 45.72 32.98 31.54 30.55 90.45 90.45 90.45 
100 55.87 55.76 45.72 32.98 31.54 30.55 90.45 90.45 90.45 
120 55.87 55.76 45.72 32.98 31.54 30.55 90.75 90.75 90.75 
150 55.87 55.76 45.72 32.98 31.54 30.55 91.45 91.45 91.45 
180 55.87 55.76 45.72 32.98 31.54 30.55 91.45 91.45 91.45 
200 55.87 55.76 45.72 32.98 31.54 30.55 91.45 91.45 91.45 

230 55.87 55.76 45.72 32.98 31.54 30.55 91.45 91.45 91.45 
250 55.87 55.76 45.72 32.98 31.54 30.55 92.23 92.23 92.23 

 

 
 
Figure 2:  Stationarity Test Power for TSTAR Models of Various Orders 

 

5. CONCLUSION  

In this study, we tested for the stationarity of the modified Autoregressive (AR) and relative 

performance orders of Trigonometric Smooth Transition Autoregressive (TSTAR) models. 

The power and kind. The errors of each test were analyzed by doing simulations at various 

sample sizes and for different orders (p) of the models. The acceptance rates for each order 

of the models, including Autoregressive (AR) and Trigonometric Smooth Transition 

Autoregressive (TSTAR) models, as well as the sample sizes, were recorded in a table. The 

results obtained were plotted on the graphs as shown in figure 1 and 2. The test that had 

a greater acceptance rate was regarded as the most effective approach. The differences in 

the results of three stationarity and unit root tests will indicate how sensitive the 
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approaches are. Therefore, the Phillips Perron method was chosen as the most suitable 

approach for this investigation, considering several sample sizes and models such as 

Autoregressive (AR) and Trigonometric Smooth Transition Autoregressive (TSTAR) 

models. 
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